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2 ABOUT ME

* Associate Professor of Computer Science at the University of Primorska in Koper, Slovenia
* Assist. Prof. at Free University of Bolzano, Italy

* Postdoc at JKU Linz,Austria

* PhD at University of Ljubljana

* | aim at improving personalized services (e.g. recommender systems) through the usage of
psychological models in personalization algorithms.To achieve this, | use diverse

research methodologies, including data mining, machine learning, and user studies.
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3 ABOUT ME

* Book co-editor, Emotions and Personality in Personalized Services, ,
2016 https://www.springer.com/gp/book/9783319314112 e

Personality in

Personalized
Services

Models, Evaluation and Applications

* Book co-editor, Group Recommender Systems, 2018, e
https://www.springer.com/gp/book/97833 19750668

Martin Stettinger - Marko Tkaldic.

Group
Recommender
Systems

An Introduction

&) Springer

* Editorial board member: Springer User Modeling and User-adapted
Interaction, Human-Media Interaction in Frontiers in Computer
Science/Psychology

* Program Chair at the ACM UMAP 2021 conference, IIR 2018 w
Nicola

* Active in the RecSys and UMAP communities
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4 HICUP LAB
“HUMANS INTERACTING WITH COMPUTERS”

Running a lab with Matjaz Kljun and Klen Copi¢ Pucihar

4 profs

| postdoc
5 PhD students

Topics
* Recommender Systems, User Modeling
« HCI
* VR
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5 HICUP LAB
“HUMANS INTERACTING WITH COMPUTERS”

Running a lab with Matjaz Kljun and Klen Copic Pucihar = © U5 BIER

4 profs

18 people spent a week working in the metaverse. 2 dropped

| P ost d oc out and the rest felt frustrated and said their eyes hurt, study
finds.

5 PhD students

Topics
* Recommender Systems, User Modeling
« HCI
* VR
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6 OUTLINE

Motivation:Why Cognitive Modeling in Recommender Systems?

Models of Personality and Emotions

Usage of Personality and Emotions in Recommender Systems

Work-in-progress: Eudaimonia and Hedonia

Conclusion
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7 GOAL OF THE TALK

* Behaviour (implicit data) is only part of the knowledge about users in recommender

systems

* Cognitive models are important, too

* Three stories
* Netflix
 Nature and Nurture

* La vita e’ bella
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9 WHAT DO | MEAN BY BEHAVIOUR?

Godfather | Inception | Hangover Sophie’s
Choice
Peter | 4 5 5 !
Paul |? 3 I 4
Mary |2 4 4 3
Joan |? 2 4 4

Athabasca University Talk, September 2022

Behavioral/Implicit Data
->

Machine Learning

a3

Godfather | Inception | Hangover Sophie’s
Choice
5 5 4
3 I 4
3 2 3
2 3 4
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10 |-THE NETFLIX STORY

* Neil Hunt (Netflix), Keynote at RecSys 2014 : Quantifying the Value of Better

Recommendations™:
* We optimize for hours of viewing...

* ..but all hours are not equal
¢ Addiction
¢ Compelling
* We might be optimizing for addiction over compelling

* How to qualify the viewing hours!?

*https://youtu.be/lYcDR8z-rRY?t=4727
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Il 2-THE NATURE AND NURTURE STORY

* How much of the human mind is built-in, and how much of it is constructed by experience!

* Skinner-Chomsky debate on language learning
* Blank state: there’s nothing underneath to understand (Locke, Skinner)

* Language acquisition device: we need to understand the underlying mechanisms (Chomsky, Pinker)

* To get computers to think like humans, we need a new A.l. paradigm, one that places top down and
bottom up knowledge on equal footing. Bottom-up knowledge is the kind of raw information we get
directly from our senses, like patterns of light falling on our retina. Top-down knowledge comprises cognitive
models of the world and how it works.

Marcus, Gary. "Innateness, alphazero, and artificial intelligence." arXiv preprint arXiv:1801.05667 (2018).
Marcus, Gary, Artificial Intelligence Is Stuck. Here’s How to Move It Forward. New York Times, July 29,2017
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12 3-THE “LIFE IS BEAUTIFUL (1997)” STORY

ORG)

* What does thumbs up mean!?

* Funny (hedonic quality) * Liked the jokes?

. : : , * Moved by the drama?
* Tragic (eudaimonic quality)
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13 NEED TO UNDERSTAND THE USER

Observing purely behavioral data might lead to inaccurate/incomplete conclusions

Hence, we need to understand which cognitive processes are driving the behaviour

Cognitive modelling aims at predicting cognitive models parameters from behavioural

data

These models can be then used in recommender systems
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14 NEED TO UNDERSTAND THE USER

Observing purely behavioral data might lead to wrong conclusions

* Hence, we need to understand which cognitive processes are driving the behaviour

Cognitive modelling aims at predicting cognitive models parameters from behavioural
data
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15 EXISTING MODELS OF MIND, COGNITION,

DECISION MAKING
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Goertzel, Ben, Matt Iklé, and Jared Wigmore. "The architecture of human-like general
intelligence." Theoretical Foundations of Artificial General Intelligence. Atlantis Press,
Paris, 2012. 123-144.

Athabasca University Talk, September 2022

Characteristics of
decision maker
eg. preferences,
personality

Characteristics of

options B A
eg. likelihood or
probability, time delay,
interpersonal outcomes C
vY
Current emotions s Conscious and/or D E

l.e, emotions felt at

. ] nonconscious evaluation
time of decision

Incidental | e e
influences
e.g, mood, weather,
carryover effects

Figure 2

— Paths included in traditional
rational choice models

d in traditiona

— Decision |——

Expected outcomes

(including expected
emotions)

- B

Toward a general model of affective influences on decision making: the emotion-imbued choice model.

Lerner, Jennifer S., et al. "Emotion and decision making." Annual review of

psychology 66 (2015): 799-823.
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16 EXISTING MODELS OF MIND, COGNITION,
DECISION MAKING
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Toward a general model of affective influences on decision majg@¥ the emotion-imbued choice model.

Goertzel, Ben, Matt Iklé, and Jared Wigmore. "The architecture of

intelligence." Theoretical Foundations of Artificial General Intelligence. A
Paris, 2012. 123-144.

et al. Jsfiotion and decision making." Annual review of
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PERSONALITY

17 EXISTING MODELS OF
DECISION MAKING
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18 PERSONALITY AND EMOTIONS

personality

(Excerpt of a) user’s lifetime
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19 PERSONALITY AND EMOTIONS

Five Factor Model:
Openness to new experiences
A - Conscientiousness
- Extraversion
- Agreeableness
- Neuroticism

personality

(Excerpt of a) user’s lifetime

Athabasca University Talk, September 2022 P : fommi



20 PERSONALITY AND EMOTIONS

N
~__~ \

(Excerpt of a) user’s lifetime

Athabasca University Talk, September 2022 P famnit



21 PERSONALITY AND EMOTIONS

- No particular trigger

y - Positive/Negative

N
~__~ \

(Excerpt of a) user’s lifetime
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22 PERSONALITY AND EMOTIONS

personallty

m

(Excerpt of a) user’s lifetime
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23 PERSONALITY AND EMOTIONS

- Triggered
Discrete emotions (anger, disgust, fear, happiness, sadness, surprise)
A o o .
7 - Dimensional model (valence, arousal, dominance)

personallty

W T

(Excerpt of a) user’s lifetime
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24 EMOTION VS. MOOD VS. SENTIMENT

* Let’s clear some terminology
* Affect : umbrella term for describing the topics of emotion, feelings, and moods
* Emotion:
* brief in duration
* consist of a coordinated set of responses (verbal, physiological, behavioral,and neural mechanisms)
* triggered
* Mood:
* last longer
* less intense than emotions
° no trigger
¢ Sentiment:
* towards an object

* positive/negative

Athabasca University Talk, September 2022 P famnit



25 BASIC EMOTIONS

Discrete classes model
Different sets
Darwin: Expression of emotions in man and animal |

Ekman definition (6 + neutral):

Happiness
Anger
Fear
Sadness
Disgust

Surprise

Athabasca University Talk, September 2022
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26 DIMENSIONAL MODEL

L|§|_|

* Three continuous dimensions Lf |'I L| |'|
O OCHEERFUL

* Valence/Pleasure (positive-negative) #»0 00 O P

s '_l
* Arousal (high-low) * * 4»;».? '"

* Dominance (high-low) werO OO0 OO0 OO0 O Q ACTIVE

* Each emotion is a point in the VAD space L—[ﬁ% H’ﬁ]p i ﬁ ﬂ

INDEPENDENTO) O O O O O O O (O DePeNpent

:@-ﬂgﬁ

Bradley, M. M., and Lang, P. . (1994). Measuring emotion: the self-assessment manikin and the semantic
differential. Journal of Behavior Therapy and Experimental Psychiatry, 25(1), 49-59.
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27 USAGE OF PERSONALITY AND EMOTIONS FOR
BETTER RECOMMENDATIONS

* Assume Personality and Emotions can be measured

* Personality:
* New-user problem (user similarity)
* Diversity

* Acquisition

* Emotions:
* Emotions as context
* Modeling the target emotion
* Emotions as feedback
* Group setting: emotional contagion

* Acquisition

Athabasca University Talk, September 2022 P famnit



28 USAGE OF PERSONALITY AND EMOTIONS FOR
BETTER RECOMMENDATIONS

* Assume Personality and Emotions can be measured

* Personality:
* New-user problem (user similarity)
* Diversity
* Acquisition

* Emotions:
* Emotions as context
* Modeling the target emotion
* Emotions as feedback
* Group setting: emotional contagion

* Acquisition
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29 PERSONALITY AS USER SIMILARITY - |

* New user problem |
* N =52, images =70 n‘j,
) E |:|__.E,n..-.':H:'“l:'___.-u-J:":lJ:| E
S T 3 o e e ]
* User similarities o
Og F“n” -
 Rating-based [
* Personality-based
L a ]

o
* Rating-based catches the personality e
only after 40 ratings have been “F | | | | | |
entered

Tkalci¢, M., Kunaver, M., Kosir, A., and Tasic, . (201 ). Addressing the new user problem with a personality
based user similarity measure. In UMMS 201 | proceedings
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30 PERSONALITY AS USER SIMILARITY - I

¢ N= I I I ’ 646 Songs =#=rating-based =®=personality-based rating+personality (alpha =0.5)

* User similarities (Pearson CC)

 Rating-based &

1.05 e

* Personality-based

MAE

0.95

0.9
5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100105110

Hu, R., and Pu, P. (2010). Using Personality Information in Collaborative Filtering for New Users. In Proceedings of the 2nd ACM
RecSys’| 0 Workshop on Recommender Systems and the Social Web (pp. 17-24).

famnit
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31 PERSONALITY AS USER SIMILARITY 1l - IN MATRIX
FACTORIZATION

* In (Elahi et al., 2013) and (Fernandez-Tobias, 2016)

0.015

* Injection of personality factors in MF as additional features

Twi = qi(Pu + ZaeA(u) Ya) oo H H

* personality u = (2.3,4.0,3.6,5.0,1.2) maps to A(u) = {ope2, 0.000

Con4’ eXt4’ agrs’ neu I }' ‘ [ iMF [ PersonalityMF ] Most popular

MAP@10

Elahi, M., Braunhofer, M., Ricci, F, and Tkalcic, M. (201 3). Personality-based active learning for collaborative filtering recommender
systems. In M. Baldoni, C. Baroglio, G. Boella, and O. Micalizio (Eds.), AI*IA 2013: Advances in Artificial Intelligence (pp. 360-371).

Fernandez-Tobias, ., Braunhofer, M., Elahi, M., Ricci, F, and Cantador, I. (2016).Alleviating the new user problem in collaborative
filtering by exploiting personality information. UMUAI, 26(2), 1-35. https://doi.org/10.1007/s11257-016-9172-z
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32 PERSONALITY AND DIVERSITY

high

Openness
to new
experiences

v

—

Are you satisfied with
the recommendations?

Are you satisfied with
the recommendations?
Are you satisfied with
_> Y .
the recommendations?

Chen, L,Wu,W, and He, L. (2013). How personality influences users’ needs for recommendation diversity? CHI ’|3 Extended
Abstracts on Human Factors in Computing Systems on - CHI EA ’13, 829. https://doi.org/10.1145/2468356.2468505
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33 PERSONALITY AND DIVERSITY

B -

* Within subject N=52, movies Bversion &
~ 4 3. 85 387 4

* Diversity per: genre, director, country, release time, actor i}é _ I
5 o '

* Rules from the previous study y
L

* High Level of Openness is linked to high need for diversity w.r.t.
aCtor/aCtress : Recommendation Acouracy Syztem Competence (mrerall Satisfaction
Pl of pal o PR oS

* Low Level of Conscientiousness is correlated with high need for
the overall diversity

Wu, W, Chen, L.,and He, L. (2013). Using personality to adjust diversity in recommender systems. Proceedings of the 24th ACM
Conference on Hypertext and Social Media - HT ’13, (May), 225-229.
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34 PERSONALITY ACQUISITION

* Questionnaires
* BFI: 44 questions

e TIPI: 10 questions
* NEO-IPIP: 300 questions

* Research on unobtrusive personality detection from digital traces

 Twitter, Instagram, Facebook, eye gaze

* Off-the shelf solutions: inference from social media:

* Cambridge University Psychometric Center: https://applymagicsauce.com/demo

* IBM Watson Personality Insights: https://cloud.ibm.com/apidocs/personality-insights

famnit
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https://applymagicsauce.com/demo
https://cloud.ibm.com/apidocs/personality-insights

Study (n)
Celli et al,, 2014 (n = 89)

Farnadi et al,, 2016 Study 1 (n = 3731)

Farnadi et al., 2016 Study 3 (n = 44)
Gaoetal., 2013 (n =176)
Golbeck et al. 2011 (n = 167)
Gosling etal., 2011 (n=133)
Kleanthous et al., 2016 (n = 62)
Kosinski et al., 2013 (n = 54373)
Lietal., 2014 (n = 547)
Liu et al., 2016 Study 1 (n = 254)
Liu et al., 2016 Study 2 (n = 429)
Qiuetal,, 2012 (n = 142)
Skowron et al., 2016 (n = 62)
Sumner et al., 2012 (n = 616)

Wald etal., 2012 (n = 537)

[l openness

B conscientiousness

[ extraversion

[ agreeableness

@ neuroticism

.61.55, .66]
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36 USAGE OF PERSONALITY AND EMOTIONS FOR
BETTER RECOMMENDATIONS

* Assume Personality and Emotions can be measured

* Personality:
* Content recommendations (rule-based)
* New-user problem (user similarity)
* Diversity

* Acquisition
* Emotions:
* Emotions as context
* Modeling the target emotion
* Emotions as feedback
* Group setting:emotional contagion
* Acquisition

Athabasca University Talk, September 2022 P famnit



37 EMOTIONS AS CONTEXT

* Movie consumption dataset with several contextual 1.1
variables 1.05
* Time, part-of-day, season, location, weather, social, end m ]
n
emotion, dominant emotion, mood and others & 0.957

* Various contextualization techniques

NN

NN

NN

|

CW Item Splitting User Splitting Ul Splitting

NN

o NRNNINNRNNNNN

# All Contexts = No Emotions = Emotions Only

Yong Zheng, Bamshad Mobasher, Robin D. Burke: The Role of Emotions in Context-aware Recommendation. Decisions@RecSys 2013:21-28

Zheng,Y., Mobasher, B., and Burke, R. (2016). Emotions in Context-Aware Recommender Systems (pp. 3| 1-326). In M.Tkalcic, B.
De Carolis, M. de Gemmis,A. Odi¢, and A. Kosir (Eds.), Emotions and Personality in Personalized Services: Models, Evaluation and Applications

famnit
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38 EMOTIONAL CONTAGION

* RQ: does emotional contagion occur outside of in-person interactions!?

* Facebook users (N = 689,003)

* 2 experiments:
* exposure to friends’ positive emotional content was reduced

group (only emotional content omitted)

* control group (any content omitted)
* exposure to friends’ negative emotional content was reduced

group (only emotional content omitted)

control group (any content omitted)

by
Yz
“p
-3
fo

Kramer,A. D. ., Guillory, J. E., & Hancock, J.T. (2014). Experimental evidence of massive-scale emotional contagion through social networks. Proceedings of the
P 2 famnit
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National Academy of Sciences of the United States of America, | | (29), 8788—-8790. https://doi.org/10.1073/pnas.13200401 | |
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39 EMOTIONAL CONTAGION

User reads posts User generates postspositive/negative

Posts’ filtering

All friends’ posts positive/negative
‘ content |
[ content l
content
content

content

Iy,
2
4
%

Kramer,A. D. ., Guillory, J. E., & Hancock, J.T. (2014). Experimental evidence of massive-scale emotional contagion through social networks. Proceedings of the
P :g famnit
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National Academy of Sciences of the United States of America, | | (29), 8788—-8790. https://doi.org/10.1073/pnas.13200401 | |
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40 EMOTIONS AS FEEDBACK

* Pairwise music preferences

* Differences in emotions predict the preferences

* Contempt

* Valence

* Joy !
PREDICTION

e Sadness MODEL

l

The song on the right is SOMEWHAT more suitable

Tkalcic, M., Maleki, N., Pesek, M., Elahi, M., Ricci, F, & Marolt, M. (2019). Prediction of music pairwise preferences from facial expressions. Proceedings of the 24th
International Conference on Intelligent User Interfaces - IUl 19, 150—159. https://doi.org/10.1145/3301275.3302266
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41 EMOTION ACQUISITION

* Questionnaires

* Multimodal detection:
* Modalities: Audio, language,
visual, physiology
* Off-the-shelf solutions: Noldus,
Affectiva, Microsoft Cloud,

Amazon Cloud

Athabasca University Talk, September 2022 P famnit



42 EMOTION ACQUISITION

* Questionnaires

* Multimodal detection:
* Modalities: Audio, language,
visual, physiology
* Off-the-shelf solutions: Noldus,
Affectiva, Microsoft Cloud,

Amazon Cloud

famnit
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43 LATEST RESEARCH

* Matrix Factorization:

* r(ui) = (PP ---)(q9ps---)

* what do p,, g, mean?

Athabasca University Talk, September 2022
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44 LATEST RESEARCH

* Matrix Factorization:

* r(ui) = (PP ---)(q9ps---)

* what do p,, g, mean?

» Using cognitive features to explain
° r(ui) = (e, hy)(e, hy)

* Eudaimonia

* Hedonia

Athabasca University Talk, September 2022 P famnit



45 LATEST RESEARCH

* Matrix Factorization: * Required features:
* r(ui) = (PP ---)(q1,9y ---) * e,:user propensity for eudaimonia
* what do p;, q;,, mean? * h, :user propensity for hedonia

* Using cognitive features to explain * & :eudaimonic quality of item
© ru,i) = (e, h.)(e, h) * h, : hedonic quality of item

* Eudaimonia

* Hedonia

Athabasca University Talk, September 2022 P famnit



HEDONIA/EUDAIMONIA

e

SOME GUYS JUST CAN'T HANDLE VEGAS

46

LLLLLL

MANCHESTER
#SEA

ancrae w KENNETH LONERGAN ¥

"

HEDONIC &

EUDAIMONIC \/)
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HEDONIA/EUDAIMONIA

4 7 SOME GUYS JUST CAN T HANDLE'VE(;g
MANCL—] OIENSTER

HEDONIC &

EUDAIMONIC &

PETER pu A pu
PAUL Bd P mie
MARY b s d mie
JOAN b s b s L
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48 LATEST RESEARCH

* Challenges:

* Unobtrusive acquisition of item characteristics

* Music: Lyrics (Hrustanovic, S., Kavsek, B., & Tkalci¢, M. (2021). Recognition of Eudaimonic and Hedonic
Qualities from Song Lyrics. Proceedings of the 6th Human-Computer Interaction Slovenia Conference, 9.)

* Movies: Subtitles (Motamedi, E., & Tkalcic, M. (2021). Prediction of Eudaimonic and Hedonic Movie
Characteristics From Subtitles. Proceedings of the 6th Human-Computer Interaction Slovenia Conference, 8.)

* Unobtrusive acquisition of user characteristics (work in progress)

* From rating behavior. (Tkalci¢, Motamedi, Puc, Mars Bitenc, 2022) Prediction of Hedonic and Eudaimonic
Characteristics from User Interactions. Adjunct Proceedings of the 30th ACM Conference on User Modeling,
Adaptation and Personalization (UMAP '22 Adjunct), July 4—7, 2022, Barcelona, Spain
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49 UNOBTRUSIVE ACQUISITION OF EH IN MOVIES

e |77 users, 30 movies
* Ratings
* Hedonic/eudaimonic movie labels

* Subtitles
* NLP
* TF-IDF, Fasttext for features
* Nested x-fold validation (10,3)
* RMSE (scale I-10):

* Eudaimonia: .26 (avg baseline) ->1.06 (Random Forest)
* Hedonia: 1.34-> .13
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50 UNOBTRUSIVE ACQUISITION OF EH IN SONGS

1991 users, 100 songs
* Hedonic/eudaimonic labels

« Lyrics

* NLP

TF_IDF

Nested x-fold validation (5,5)

Binary prediction accuracy: just slight improvements (0.54/0.55) over majority baseline
(0.5)
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51 DATA COLLECTION

* https://hicupexperiments.famnit.upr.si/

* Goal: 1000 users, 1000movies, |10k ratings
* Stuck at 600+
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52 CONCLUSION

* Purely behavioral data might lead to inaccurate conclusions

* We need to understand which cognitive processes are driving the behaviour
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54 HANDS-ON

* Web demo for emotion acquisition:

https://osebje.famnit.upr.si/~marko.tkalcic/durham_lecture/

 Additional slide deck for building the interface available
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57 PERSONALITY AND PREFERENCES

* Personality traits (extraverted/introverted, open/conservative etc.) are linked to music

genre preferences (Rentfrow et al, 2003)

External Correlates of the Music-Preference Dimensions

Reflective and Intense and Upbeat and Energetic and
Complex Rebellious Conventional Rhythmic
Criterion measure M (SD) S2 S3 S2 S3 S2 S3 S2 S3
Personality
Big Five

Extraversion 342 (0.85) 01 —02 00 08* 24% 15% 22% 19%
Agreeableness 3.80 (0.62) 0l 03 — 04 0l 23% 24% 08* 0D9*
Conscientiousness 3.57(0.64) —02 — 06 — 04 —03 15% AB* 00 —03
Emotional Stability 3.11(0.81) 08* 04 —.01 — 0l — 07 — 04 01 — 0l
Openness 375(0.61) 44 41% 18% 5% —.14% — 08* 03 04

Rentfrow, P. J.,and Gosling, S. D. (2003). The do re mi’s of everyday life:The structure and personality correlates of music preferences. Journal of Personality and
Social Psychology, 84(6), 1236—1256.

Tkalci¢, M., Ferwerda, B., Hauger, D, and Schedl, M. (2015). Personality Correlates for Digital Concert Program Notes. In UMAP 2015, Lecture Notes On
Computer Science 9146 (Vol. 9146, pp. 364—-369).
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58 PERSONALITY FOR MOOD REGULATION
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* High on openness, extraversion, and agreeableness more inclined to listen to happy music
when they are feeling sad.

* High on neuroticism listen to more sad songs when feeling

B. Ferwerda, M. Schedl, and M. Tkalcic, “Personality & Emotional States : Understanding Users ’ Music Listening Needs,” in
UMAP 2015 Extended Proceedings, 2015.
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59 WHY DO WE CONSUME CONTENT? MOOD
REGULATION

Mean rating (5D)

Positive mood management (e.g., to set the ‘right’ mood) 7.90 (1.52)
Diversion (e.g., to pass the time) 643 (1.04)
Negative mood management (e.g., to make me feel better) 6.36 (1.96)
Interpersonal relationships (e.g., to have something to talk about with others) 3.54 (2.02)
Personal identity (e.g., to create an image for myself) 2.89 (2.10)
Surveillance (e.g., to learn how other people think) 2.33 (1.73)

Lonsdale,A. |.,and North,A. C. (201 I).Why do we listen to music? A uses and gratifications analysis. British Journal of Psychology (London, England : 1953), 102(1),
|08—34. https://doi.org/10.1348/000712610X50683 |

Oliver, M. B. (2008). Tender affective states as predictors of entertainment preference. Journal of Communication, 58(1), 40—61. https://doi.org/10.1111/j.1460-
2466.2007.00373.x
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60 HOWEVER, IT CAN GET COMPLICATED

* Why do we like drama, sad films?

* ...under some circumstances, individuals may choose to view entertainment for reasons that may not be
best described as driven by hedonic motivations but rather as driven by eudaimonic motivations: greater
insight, self reflection, or contemplations of poignancy or meaningfulness (e.g., what makes life valuable).

* The Hangover
* hedonic quality (comedy)

* no eudaimonic quality

¢ Lavita € bella
* hedonic quality (comedy)

* eudaimonic quality

v
Yz
“p

Athabasca University Talk, September 2022 P famnit

i
INIVER



61 TIPI

TIPI: | see myself as (1-7 ...agree/disagree):

l.
2.
3.

10.

Extraverted, enthusiastic.
Critical, quarrelsome.
Dependable, self-disciplined.

Anxious, easily upset.

Open to new experiences, complex.

Reserved, quiet.
Sympathetic, warm.
Disorganized, careless.
Calm, emotionally stable.

Conventional, uncreative.

bl =ql + (8 — q6) = Extraversion

b2 = q2 + (8 — q7) = Agreeableness

b3 = q3 + (8 — q8) = Conscientiousness
b4 = q4 + (8 — q9) = Emotional Stability

b5 = g5 + (8 — ql10) = Openness to
Experiences

Gosling, S. D., Rentfrow, P. J., and Swann,W. B. (2003). A very brief measure of the Big-Five personality domains. Journal of
Research in Personality, 37(6), 504—-528. doi:10.1016/50092-6566(03)00046- |
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62 EMOTIONS AS FEEDBACK - |

* Video-on-demand scenario o
* Usage of hesitation as feedback £ — ‘- <o |
I
* 4 recommendations, | selection
* control group: recommend similar N—— i
S e &
* hesitation group: recommend similar/diverse Il s the yeer
NO (get similar items) I
. DECISION MODEL

Quality of experience (QoE) is improved

when hesitation is taken into account

Vodlan, T,, Tkalci¢, M., and Kosir,A. (2015).The impact of hesitation, a social signal, on a user’s quality of experience in multimedia
content retrieval. Multimedia Tools and Applications. doi:10.1007/s11042-014-1933-2
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