

Using Cognitive Traits for Improving the Detection of Learning Styles

Sabine Graf and Kinshuk Athabasca University Canada

Why detecting learning styles?

- Why shall we consider learning styles in technology enhanced learning?
 - Complex and partially inconsistent field
 - Learners have different ways in which they prefer to learn
 - If these preferences are not supported, learners can have difficulties in learning
 - Previous studies showed that providing learners with courses that fit their learning styles has potential to help learners in learning

Student Modelling

- For considering learning styles in learning systems, learning styles of learners have to be known first
- Student modelling refers to the process of building and updating a student model, which includes relevant data about the student
- How to get this information?

- Collaborative Student Modelling
 - Learners are asked to provide explicitly information about their needs and characteristics (e.g., filling out a questionnaire, performing a task, and so on)
- Automatic Student Modelling
 - The system infers the needs and characteristics automatically from the behaviour and actions of students in an online course
 - Advantage:
 - Students do not have additional effort
 - Approach is direct and free from the problem of inaccurate selfconceptions
 - Data are gathered over a period of time → more accurate
 - Dynamic aspects can be considered
 - Drawback/Challenges:
 - Getting enough reliable information to build a robust student model
 - Suggestions: use of additional sources

Aim

- Find mechanisms that use whatever information about the learner is available to get as much reliable information to build a more robust student model
- Investigated relationship between learning styles and cognitive traits
 - → Additional data
 - → Improve the identification process of learning styles in adaptive learning environments

Felder-Silverman Learning Style Model

- Each learner has a preference on each of the dimensions
- Dimensions:
 - Active Reflective learning by doing – learning by thinking things through group work – work alone
 - Sensing Intuitive concrete material – abstract material more practical – more innovative and creative patient / not patient with details standard procedures – challenges

- Visual Verbal learning from pictures – learning from words
- Sequential Global learn in linear steps – learn in large leaps good in using partial knowledge – need "big picture"

Felder-Silverman Learning Style Model

Scales of the dimensions:

- → Strong preference but no support → problems
- Differences to other learning style models:
 - describes learning style in more detail
 - represents also balanced preferences
 - describes tendencies
 - domain-independent

Cognitive Trait Model (CTM)

- Developed by Lin et al., 2003
- CTM is a student model that profiles learners according to their cognitive traits
- Includes cognitive traits such as
 - Working Memory Capacity
 - Inductive Reasoning Ability
 - ...
- Cognitive traits are more or less persistent
 - → CTM can still be valid after a long period of time
 - → CTM is domain independent and can be used in different learning environments, thus supporting life long learning

Working Memory Capacity (WMC)

- Important cognitive trait for learning
- Also known as short-term memory
- Researchers do not agree on the structure of working memory, they agree that it consists of storage and operational sub-systems
- Allows us to keep active a limited amount of information (7+/-2 items) for a brief period of time

Relationship between FSLSM and WMC

Previous Research

- Comprehensive literature review
 - Looking into existing studies that investigated relationships between learning styles, cognitive styles and cognitive traits
 - → Indirect relationships were found
- Exploratory study with 39 students
 - Identification of learning styles through ILS questionnaire and WMC through Web-OSPAN tasks
 - Statistical analysis of data to find relationships
 - → Relationships between learning styles and WMC were found
- Main study with 297 students
 - Identification of learning styles through ILS questionnaire and WMC through Web-OSPAN tasks
 - Detailed statistical analysis of data to find relationships
 - → Relationships between learning styles and WMC were found

Overview of Results

Active/reflective:

- High WMC <-> balanced learning preference
- Low WMC <-> strong active preference
- Low WMC <-> strong reflective preference

- Low WMC <-> sensing preference
- High WMC <-> balanced learning preference

- Verbal learning preference -> high WMC
- Low WMC -> visual preference

Sequential/Global:

No relationship found

Research Question

- How can we use the identified relationships in student modelling of learning styles?
- Does including these relationships has potential to improve the accuracy of automatic detection of learning styles?

Automatic Identification of Learning Styles

- Identifying learning styles is based on patterns of behaviour
- Commonly used types of learning objects were used and patterns were derived from these types of learning objects
- Overall, 27 patterns were used for the four learning style dimensions of FSLSM
- Hints about students' learning styles were calculated based on students' behaviour with respect to the identified patterns

Automatic Identification of Learning Styles

Implementation of the approach as tool

Automatic Identification of Learning of Computing & Information Systems Styles from Behaviour and Cognitive Traits

Extending the approach/tool through data from cognitive traits

Experiment

Aim:

- demonstrate the practical use of the identified relationship between learning styles and cognitive traits and
- demonstrate the positive effect of this relationship for identifying learning styles
- Data from 63 students
 - Data from ILS questionnaire and Web-OSPAN task
 - Behaviour data from an online course

Experiment Design

Step1: Tool was used without considering information from cognitive traits (calculation is only based on behaviour data) and results were compared to ILS results using the following formula:

 $\frac{\sum_{i=1}^{n} Sim(LS_{predicted}, LS_{ILS})}{n} \cdot 100$

Step2: Tool was used with considering information from cognitive traits (calculation is based on behaviour data and cognitive traits data) and results were again compared to ILS results

Experiment results

	act/ref	sen/int	vis/ver
only behaviour	79.37	74.60	76.19
behaviour and cognitive traits	79.37	76.19	79.37

- No difference for act/ref dimension
- Increase in precision measure for sen/int and vis/ver dimension
- → Relatively small increase but promising results since only one "pattern" has been used
- → Results encourage incorporating also other cognitive traits

Conclusion & Future Work

- Investigated the practical use of the relationship between learning styles and cognitive traits for improving student modelling of learning styles
- Results show a small increase of the accuracy which is a promising results, given that only one cognitive traits was considered.
- Future Work
 - Include also other cognitive traits in the approach/tool for identifying learning styles
 - Investigate the act/ref dimension and its relationship to WMC