Using Cognitive Traits for Improving the Detection of Learning Styles

Sabine Graf and Kinshuk
Athabasca University
Canada
Why detecting learning styles?

- Why shall we consider learning styles in technology enhanced learning?
 - Complex and partially inconsistent field
 - Learners have different ways in which they prefer to learn
 - If these preferences are not supported, learners can have difficulties in learning
 - Previous studies showed that providing learners with courses that fit their learning styles has potential to help learners in learning
Student Modelling

- For considering learning styles in learning systems, learning styles of learners have to be known first.
- Student modelling refers to the process of building and updating a student model, which includes relevant data about the student.
- How to get this information?

Student Modelling

- Collaborative Student Modelling Approach
- Automatic Student Modelling Approach
Collaborative & Automatic Student Modelling

- **Collaborative Student Modelling**
 - Learners are asked to provide explicitly information about their needs and characteristics (e.g., filling out a questionnaire, performing a task, and so on)

- **Automatic Student Modelling**
 - The system infers the needs and characteristics automatically from the behaviour and actions of students in an online course
 - **Advantage:**
 - Students do not have additional effort
 - Approach is direct and free from the problem of inaccurate self-conceptions
 - Data are gathered over a period of time → more accurate
 - Dynamic aspects can be considered
 - **Drawback/Challenges:**
 - Getting enough reliable information to build a robust student model
 - Suggestions: use of additional sources
Aim

- Find mechanisms that use whatever information about the learner is available to get as much reliable information to build a more robust student model

- Investigated relationship between learning styles and cognitive traits
 - Additional data
 - Improve the identification process of learning styles in adaptive learning environments
Felder-Silverman Learning Style Model

- Each learner has a preference on each of the dimensions

- Dimensions:
 - Active – Reflective
 - learning by doing – learning by thinking things through
 - group work – work alone
 - Sensing – Intuitive
 - concrete material – abstract material
 - more practical – more innovative and creative
 - patient / not patient with details
 - standard procedures – challenges
 - Visual – Verbal
 - learning from pictures – learning from words
 - Sequential – Global
 - learn in linear steps – learn in large leaps
 - good in using partial knowledge – need „big picture“
Felder-Silverman Learning Style Model

- Scales of the dimensions:

 active to reflective

 +11 +9 +7 +5 +3 +1 -1 -3 -5 -7 -9 -11

 Strong preference Moderate preference Well balanced Moderate preference Strong preference

 → Strong preference but no support → problems

- Differences to other learning style models:
 - describes learning style in more detail
 - represents also balanced preferences
 - describes tendencies
 - domain-independent
Cognitive Trait Model (CTM)

- Developed by Lin et al., 2003
- CTM is a student model that profiles learners according to their cognitive traits
- Includes cognitive traits such as
 - Working Memory Capacity
 - Inductive Reasoning Ability
 - ...
- Cognitive traits are more or less persistent
 - CTM can still be valid after a long period of time
 - CTM is domain independent and can be used in different learning environments, thus supporting life long learning
Working Memory Capacity (WMC)

- Important cognitive trait for learning
- Also known as short-term memory
- Researchers do not agree on the structure of working memory, they agree that it consists of storage and operational sub-systems
- Allows us to keep active a limited amount of information (7+/−2 items) for a brief period of time
Relationship between FSLSM and WMC

Felder-Silverman Learning Style Model

- Sensing
- Intuitive
- Active
- Reflective
- Visual
- Verbal
- Sequential
- Global

Working Memory Capacity

- High
- Low
Previous Research

- Comprehensive literature review
 - Looking into existing studies that investigated relationships between learning styles, cognitive styles and cognitive traits
 - Indirect relationships were found

- Exploratory study with 39 students
 - Identification of learning styles through ILS questionnaire and WMC through Web-OSPAN tasks
 - Statistical analysis of data to find relationships
 - Relationships between learning styles and WMC were found

- Main study with 297 students
 - Identification of learning styles through ILS questionnaire and WMC through Web-OSPAN tasks
 - Detailed statistical analysis of data to find relationships
 - Relationships between learning styles and WMC were found
Overview of Results

- **Active/reflective:**
 - High WMC <-> balanced learning preference
 - Low WMC <-> strong active preference
 - Low WMC <-> strong reflective preference

- **Sensing/intuitive:**
 - Low WMC <-> sensing preference
 - High WMC <-> balanced learning preference

- **Visual/verbal:**
 - Verbal learning preference -> high WMC
 - Low WMC -> visual preference

- **Sequential/Global:**
 - No relationship found
Research Question

- How can we use the identified relationships in student modelling of learning styles?
- Does including these relationships has potential to improve the accuracy of automatic detection of learning styles?
Automatic Identification of Learning Styles

- Identifying learning styles is based on patterns of behaviour
- Commonly used types of learning objects were used and patterns were derived from these types of learning objects
- Overall, 27 patterns were used for the four learning style dimensions of FSLSM
- Hints about students’ learning styles were calculated based on students’ behaviour with respect to the identified patterns
Automatic Identification of Learning Styles

- Implementation of the approach as tool
Automatic Identification of Learning Styles from Behaviour and Cognitive Traits

- Extending the approach/tool through data from cognitive traits
Experiment

- **Aim:**
 - demonstrate the practical use of the identified relationship between learning styles and cognitive traits and
 - demonstrate the positive effect of this relationship for identifying learning styles

- **Data from 63 students**
 - Data from ILS questionnaire and Web-OSPAN task
 - Behaviour data from an online course
Step 1: Tool was used without considering information from cognitive traits (calculation is only based on behaviour data) and results were compared to ILS results using the following formula:

\[\sum_{i=1}^{n} \frac{Sim(LS_{predicted}, LS_{ILS})}{n} \cdot 100 \]

Step 2: Tool was used with considering information from cognitive traits (calculation is based on behaviour data and cognitive traits data) and results were again compared to ILS results.
Experiment results

<table>
<thead>
<tr>
<th></th>
<th>act/ref</th>
<th>sen/int</th>
<th>vis/ver</th>
</tr>
</thead>
<tbody>
<tr>
<td>only behaviour</td>
<td>79.37</td>
<td>74.60</td>
<td>76.19</td>
</tr>
<tr>
<td>behaviour and cognitive traits</td>
<td>79.37</td>
<td>76.19</td>
<td>79.37</td>
</tr>
</tbody>
</table>

- No difference for act/ref dimension
- Increase in precision measure for sen/int and vis/ver dimension
 - Relatively small increase but promising results since only one “pattern” has been used
 - Results encourage incorporating also other cognitive traits
Conclusion & Future Work

- Investigated the practical use of the relationship between learning styles and cognitive traits for improving student modelling of learning styles.
- Results show a small increase of the accuracy which is a promising result, given that only one cognitive trait was considered.

Future Work

- Include also other cognitive traits in the approach/tool for identifying learning styles.
- Investigate the act/ref dimension and its relationship to WMC.