Correlations between Students’ Behaviour in Learning Management Systems and their Learning Style Preferences

Sabine Graf
National Central University
Taiwan
sabine.graf@ieee.org

Tzu-Chien Liu
National Central University
Taiwan
ltc@cc.ncu.edu.tw

Kinshuk
Athabasca University
Canada
kinshuk@ieee.org
Motivation

- Many research works have been conducted with respect to learning styles in technology enhanced learning, e.g.,
 - Recommending how systems can adapt to learning styles
 - Building adaptive systems
 - Automatic student modelling
- Most of these research works are based on the learning style model's description about how students with specific learning styles typically behave
- But most learning style models are developed for traditional learning rather than online learning
Aim of Research

How does students behave in an online course considering their learning styles?

→ Correlations between behaviour and learning style preferences

• Learning Management Systems:
 - Support teachers in creating, administrating, and managing online courses
 - Consider a broad range of features of technology enhanced learning (TEL)
 - Are commonly used in TEL
 → By incorporating only behaviour which is common in TEL, we aim at making our results applicable for TEL in general
Benefits from more detailed information

- **Student Modelling**
 - Automatic approach has several advantages over using learning style questionnaires
 - free of problems regarding inaccurate self-conception
 - Considering data from a time span → more accurate
 - Consideration of changes of learning styles
 - More detailed information about how students really behave in an online environment can make the automatic student modelling approach more accurate

- **Adaptive Course Generation**
 - More detailed information about how students really prefer to behave can help in developing more precise adaptation features

- **Potential of adaptivity regarding learning styles**
 - The existence of correlations between behaviour and learning styles gives another indication for the potential of adaptive learning with respect to learning styles
Learning Style Preferences

- **Felder-Silverman Learning Style Model (FSLSM)**
- **Dimensions:**
 - **Active – Reflective**
 - learning by doing – learning by thinking things through
 - group work – work alone
 - **Sensing – Intuitive**
 - concrete material – abstract material
 - more practical – more innovative and creative
 - patient / not patient with details
 - standard procedures – challenges
 - **Visual – Verbal**
 - learning from pictures – learning from words
 - **Sequential – Global**
 - learn in linear steps – learn in large leaps
 - interested in details – interested in the overview
 - good in using partial knowledge – good in connecting areas
Learning Style Preferences

• **Index of Learning Styles (ILS) Questionnaire:**
 - Developed by Felder and Soloman
 - 44 questions
 - Result: a value between +11 and -11 for each dimension

• **Differences to other learning style models:**
 - combine major learning style models
 - describes learning style in more detail
 - represents also balanced preferences
 - describes tendencies
Learning Style Preferences

- **Characteristic Preferences within Felder-Silverman Learning Style dimensions (Graf, Viola, Kinshuk, and Leo, 2007)**

<table>
<thead>
<tr>
<th></th>
<th>Active</th>
<th>Reflective</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Student 1</td>
<td>Trying things out</td>
<td>Collaborate with others</td>
<td>Reflect about the material</td>
</tr>
<tr>
<td>Student 2</td>
<td>Trying things out</td>
<td>Collaborate with others</td>
<td>Reflect about the material</td>
</tr>
<tr>
<td>Student 3</td>
<td>Trying things out</td>
<td>Collaborate with others</td>
<td>Reflect about the material</td>
</tr>
</tbody>
</table>
Learning Style Preferences

- Derived Semantic Groups from the learning style model (Graf, Viola, Kinshuk, Leo, 2007)
- Verifying Semantic Groups by Fisher Linear Discriminant Analysis and empirical frequencies analysis

<table>
<thead>
<tr>
<th>Style</th>
<th>Semantic group</th>
<th>ILS questions (answer a)</th>
<th>Style</th>
<th>Semantic group</th>
<th>ILS questions (answer b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Active</td>
<td>trying something out</td>
<td>1, 17, 25, 29</td>
<td>Reflective</td>
<td>think about material</td>
<td>1, 5, 17, 25, 29</td>
</tr>
<tr>
<td></td>
<td>social oriented</td>
<td>5, 9, 13, 21, 33, 37, 41</td>
<td></td>
<td>impersonal oriented</td>
<td>9, 13, 21, 33, 41, 37</td>
</tr>
<tr>
<td>Sensing</td>
<td>existing ways</td>
<td>2, 30, 34</td>
<td>Intuitive</td>
<td>new ways</td>
<td>2, 14, 22, 26, 30, 34</td>
</tr>
<tr>
<td></td>
<td>concrete material</td>
<td>6, 10, 14, 18, 26, 38</td>
<td></td>
<td>abstract material</td>
<td>6, 10, 18, 38</td>
</tr>
<tr>
<td></td>
<td>careful with details</td>
<td>22, 42</td>
<td></td>
<td>not careful with details</td>
<td>42</td>
</tr>
<tr>
<td>Visual</td>
<td>pictures</td>
<td>3, 7, 11, 15, 19, 23, 27, 31, 35, 39, 43</td>
<td>Verbal</td>
<td>spoken words</td>
<td>3, 7, 15, 19, 27, 35</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>written words</td>
<td>3, 7, 11, 23, 31, 39</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>difficulty with visual style</td>
<td>43</td>
</tr>
<tr>
<td>Sequential</td>
<td>detail oriented</td>
<td>4, 28, 40</td>
<td>Global</td>
<td>overall picture</td>
<td>4, 8, 12, 16, 28, 40</td>
</tr>
<tr>
<td></td>
<td>sequential progress</td>
<td>20, 24, 32, 36, 44</td>
<td></td>
<td>non-sequential progress</td>
<td>24, 32</td>
</tr>
<tr>
<td></td>
<td>from parts to the whole</td>
<td>8, 12, 16</td>
<td></td>
<td>relations/connections</td>
<td>20, 36, 44</td>
</tr>
</tbody>
</table>

→ Allows building a more accurate model of the student
Design of the Study

- Object oriented modelling course at an university in Austria
- 127 students participated
- Moodle was used to provide additional learning material and learning opportunities
- Students need to perform 5 assignments and a final exam
- Student interaction with Moodle was tracked
- Students filled out the ILS questionnaire for providing information about their learning style preferences
Investigated Behaviour

- Incorporates only behaviour based on commonly used features in TEL
 - Content
 - Outlines
 - Examples
 - Self-assessment tests
 - Exercises
 - Discussion Forum
 - Navigation
 - General Patterns
Patterns of Behavior

• Content objects
 – Number of visits
 – Time student spent on content objects
 – Time student spent on content objects including graphics
 – Time student spent on content objects including only text

• Outlines
 – Number of visits
 – Time spent on outlines

• Self-assessment tests (SA-Tests)
 – Number of tests performed
 – Whether all available tests were performed at least once
 – Results on tests
 – Number of questions a learner answers twice wrong
 – Number of revisions before submission
 – Time spent on the test
 – Time a learner checked his/her results
 – Results on specific kinds of questions (facts/concepts, detail/overview, graphics/text, interpreting predefined solutions/generating new solutions)
Patterns of Behavior

• Exercises
 - Number of visits
 - Time students spent on exercises
 - Results on exercises
 - Number of revisions before submission (in combination with SA-Tests)
 - Results on questions about interpreting predefined solutions/generating new solutions (in combination with SA-Tests)

• Examples
 - Number of visits
 - Time spent on examples

• Discussion Forum
 - Number of visits
 - Time spent in the forum
 - Number of postings
Patterns of Behavior

- **Navigation**
 - Number of times, students skipped learning objects
 - Number of times, students jumped back to the previous learning object
 - Number of visits of the course overview page
 - Time students spent on the course overview page

- **General Patterns**
 - Scores on final exam
 - Scores on compulsory assignments
 - Overall time students spent in the course
 - Number of logins
 - Overall number of visited learning objects
Method of Analysis

• Requirements
 – Spending more than 5 minutes on the ILS questionnaire (41 students excluded)
 – Submitting at least 3 assignments (10 students excluded)
 – Performing the final exam (16 students excluded)

→ 75 Students fulfilled the requirements

• For calculating correlations between behaviour and learning style preferences, rank correlation analysis was used (Kendall’s tau)
Results – Active/Reflective Dimension

<table>
<thead>
<tr>
<th>trythingsout</th>
<th>social oriented</th>
<th>think about material</th>
<th>impersonal oriented</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>forum_visit (-)</td>
<td>forum_visit (+)</td>
<td>forum_visit (+)</td>
</tr>
<tr>
<td></td>
<td>forum_stay (-)</td>
<td>forum_stay (+)</td>
<td>forum_stay (+)</td>
</tr>
<tr>
<td></td>
<td>quiz_que_codedev (-)</td>
<td>content_stay (+)</td>
<td>content_stay (+)</td>
</tr>
<tr>
<td></td>
<td>content_stay (-)</td>
<td>nav_skip (-)</td>
<td>nav_skip (+)</td>
</tr>
<tr>
<td></td>
<td>nav_skip (-)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Results – Sensing/Intuitive Dimension

<table>
<thead>
<tr>
<th>existing ways</th>
<th>concrete material</th>
<th>careful with details</th>
<th>new ways</th>
<th>abstract material</th>
<th>not careful with details</th>
</tr>
</thead>
<tbody>
<tr>
<td>exercise_score (-)</td>
<td>exercise_score (-)</td>
<td>forum_visit (+)</td>
<td>selfass_ques_detail (+)</td>
<td>exercise_score (+)</td>
<td>selfass_ques_detail (-)</td>
</tr>
<tr>
<td>slides_visit_diff (+)</td>
<td></td>
<td>selfass_ques_factual (+)</td>
<td>slide_visit_diff (-)</td>
<td>quiz_ques_codeint (+)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>selfass_ques_conceptual (+)</td>
<td>course_time (-)</td>
<td></td>
<td>selfass_ques_conceptual (-)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>selfass_ques_graphics (+)</td>
<td></td>
<td></td>
<td>selfass_ques_graphics (-)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>selfass_ques_text (+)</td>
<td></td>
<td></td>
<td>selfass_ques_text (-)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>selfass_visit (+)</td>
<td></td>
<td></td>
<td>selfass_visit (-)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>selfass_visit_diff (+)</td>
<td></td>
<td></td>
<td>selfass_visit (-)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>selfass_score (+)</td>
<td></td>
<td></td>
<td>selfass_score (-)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>exercise_visit (+)</td>
<td></td>
<td></td>
<td>exercise_visit (-)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>exercise_stay (+)</td>
<td></td>
<td></td>
<td>exercise_stay (-)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>quiz_ques_codeint (+)</td>
<td></td>
<td></td>
<td>quiz_ques_codeint (-)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>slides_visit_diff (+)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>nav_overview_stay (+)</td>
<td></td>
<td></td>
<td>exam_score (-)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>course_time (+)</td>
<td></td>
<td></td>
<td>course_time (-)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>course_login (+)</td>
<td></td>
<td></td>
<td>course_login (-)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>course_activities (+)</td>
<td></td>
<td></td>
<td>course_activities (-)</td>
</tr>
</tbody>
</table>
Results – Visual/Verbal Dimension

<table>
<thead>
<tr>
<th>pictures</th>
<th>spoken words</th>
<th>written words</th>
<th>difficulty with visual style</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>selfass_ques_overview (+)</td>
<td>example_visit (-)</td>
<td>forum_post (+)</td>
</tr>
<tr>
<td></td>
<td>example_visit_diff (-)</td>
<td>exercise_visit (-)</td>
<td>exercise_visit (-)</td>
</tr>
<tr>
<td></td>
<td>example_stay (-)</td>
<td>exercise_stay (-)</td>
<td>outline_stay (-)</td>
</tr>
</tbody>
</table>
Results – Sequential/Global Dimension

<table>
<thead>
<tr>
<th>detail oriented</th>
<th>sequential progress</th>
<th>from parts to the whole</th>
<th>overall picture</th>
<th>non-sequential progress</th>
<th>relations/connections</th>
</tr>
</thead>
<tbody>
<tr>
<td>navigation_back (-)</td>
<td>navigation_overview_visit (-)</td>
<td>forum_visit (+)</td>
<td>quiz_revision (-)</td>
<td>nav_back (+)</td>
<td>forum_visit (-)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>forum_stay (+)</td>
<td>assignment_score_avg (-)</td>
<td>forum_stay (-)</td>
<td>slides_visit_diff (-)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>selfass_ques_graphics (+)</td>
<td></td>
<td>selfass_ques_overview (-)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>selfass_visit (+)</td>
<td></td>
<td>selfass_ques_factual (-)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>selfass_visit_diff (+)</td>
<td></td>
<td>selfass_ques_graphical (-)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>nav_overview_stay (+)</td>
<td></td>
<td>selfass_ques_conceptual (-)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>course_time (+)</td>
<td></td>
<td>selfass_ques_text (-)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>course_login (+)</td>
<td></td>
<td>selfass_visit (-)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>course_activities (+)</td>
<td></td>
<td>selfass_score (-)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>selfass_visit_diff (-)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>nav_skip (-)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>nav_overview_stay (-)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>course_time (-)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>course_login (-)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>course_activities (-)</td>
<td></td>
</tr>
</tbody>
</table>
Conclusions & Future Work

• Investigated the correlations between students’ behaviour in a LMS and their learning style preferences
• Comparison of our results with other studies (e.g., usage of adaptation features, automatic student modelling, …)
 – Some of our results are in agreement with existing studies
 – Some are in agreement with FSLSM but are not typically used by studies
 – Some are not explicitly mentioned by FSLSM but appear in our data
• Resulting correlations can contribute in adaptive learning by
 – showing that students with different learning style preferences behave differently in TEL
 → give another indication for the potential of adaptivity based on learning styles
 – providing more information in order to develop more precise adaptation features
 – providing more information in order to improve automatic student modelling
Conclusions & Future Work

• Future Work
 – Incorporating our findings for improving automatic student modelling and the development of adaptation features
 – Further investigate the significant results which were not explicitly mentioned by FSLSM