Ubiquitous Learning Analytics – Student/Context Modelling and Academic Analytics

Dr. Sabine Graf
Associate Professor

http://sgraf.athabascau.ca
sabineg@athabascau.ca

Research Team:
Muhammad Anwar (PhD student)
Charles Jason Bernard (MSc student)
Moushir El-Bishouty (Postdoc)
Ting-Wen Chang (Postdoc)
Elinam Richmond Hini (MSc student & RA)
Darin Hobbs (MSc student)
Hazra Imran (Postdoc)
Stephen Kladich (MSc student & RA)
Jeff Kurcz (RA)
Renan Henrique Lima (undergrad. student)
Biswajeet Mishra (undergrad. student)
Abiodun Ojo (MSc student)
Kevin Saito (RA)
Jeremie Seanosky (undergrad. student)
Mohamed B. Thaha (undergrad. student)
Richard Tortorella (MSc student)
Ubiquitous Learning Analytics

Adaptivity and Personalization
Mobile Learning
Pervasive Learning
Ubiquitous Learning
Student/Context Modelling
Sensor Technology
Ubiquitous Learning Analytics
Learning Analytics
Educational Data Mining
Learner Analytics
Sense Making
Academic Analytics
Visualization Techniques
Ubiquitous Learning Analytics

Adaptivity and Personalization

Mobile Learning

Ubiquitous Learning

Pervasive Learning

Sensor Technology

Student/Context Modelling

Ubiquitous Learning Analytics

Learning Analytics

Educational Data Mining

Learning Analytics

Learner Analytics

Academic Analytics

Sense Making

Visualization Techniques
Student/Context Modelling

- Plays a critical role in ubiquitous learning systems
- A student model includes all information about a student that is relevant for providing adaptivity and personalization in an ubiquitous learning system
- Student modelling is the process of building and updating the student model
- A context model includes all information about a student’s context that is relevant for providing adaptivity and personalization in an ubiquitous learning system
- Context modelling is the process of building and updating a context model
What data can be included in a student/context model?

- Knowledge
- Goals
- Motivational aspects
- Learning styles
- Cognitive abilities
- Meta-cognitive abilities
- Affective states
- Location
- Environmental context
- etc.
Student Modelling Approaches

Student Modelling

Collaborative Student Modelling

Automatic Student Modelling
Collaborative Student Modelling

- Ask learner explicitly for information
- Different approaches:
 - Using questions or questionnaires

Challenges:
- Reliability & validity of the instrument
- Motivate students to fill it out reliably
- Non-intentional influences
- Static instrument
Student Modelling Approaches

Automatic student modelling

- Using automatically gathered data to identify students’ situation, needs and characteristics
- Commonly used sources for data are sensors and user interactions
- Rather than asking a student, we use real data (e.g., What are students really doing in an online system? Where are students? etc.)
- Advantages:
 - Students have no additional effort
 - Uses information from a time span → higher tolerance
 - Allows dynamic updating of information
- Problem/Challenge:
 - Get enough reliable data to build a robust student model
Student Modelling Approaches

Student Modelling

Static Student Modelling

Dynamic Student Modelling
Student Modelling Approaches

- Static vs. Dynamic
 - Static: student model is built once
 - Dynamic: student model is frequently updated based on new data

- Advantages of Dynamic Student Modelling
 - dynamically building a student model by incrementally improving and fine-tuning the information in the student model in real-time
 → getting sooner a more accurate student model
 - consider exceptional behaviour of students
 → more accuracy due to considering exceptional behaviour
 - dynamically updating a student model by identifying and responding to changes in students’ characteristics/situations over time
 → more accuracy due to considering changes
Student Modelling Approaches

Group activity:

<table>
<thead>
<tr>
<th></th>
<th>Collaborative</th>
<th>Automatic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Static</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>Dynamic</td>
<td>?</td>
<td>?</td>
</tr>
</tbody>
</table>
Automatic Identification of Learning Styles

How to automatically identify students’ learning styles based on their behaviour?

General Goal

- Developing an approach for learning systems in general
- Implementing and evaluating this approach in Moodle
- Developing a tool which can be used by teachers in order to identify students’ learning styles
Felder-Silverman Learning Style Model

- Each learner has a preference on each of the dimensions

- Dimensions:
 - **Active – Reflective**
 - learning by doing – learning by thinking things through
 - group work – work alone
 - **Sensing – Intuitive**
 - concrete material – abstract material
 - more practical – more innovative and creative
 - patient / not patient with details
 - standard procedures – challenges
 - **Visual – Verbal**
 - learning from pictures – learning from words
 - **Sequential – Global**
 - learn in linear steps – learn in large leaps
 - good in using partial knowledge – need „big picture“
Automatic Identification of Learning Styles

- Identifying learning styles is based on patterns of behaviour.
- Commonly used types of learning objects were used (Content objects, Outlines, Examples, Self-assessment tests, Exercises, Discussion forum) and relevant patterns were derived from these types of learning objects.
- Overall, 27 patterns were used for the four learning style dimensions.
- Calculation of learning styles is based on hints from patterns.
- A simple rule-based mechanism is used for this calculation.
Determining Relevant Behaviour

<table>
<thead>
<tr>
<th>Active/Reflective</th>
<th>Sensing/Intuitive</th>
<th>Visual/Verbal</th>
<th>Sequential/Global</th>
</tr>
</thead>
<tbody>
<tr>
<td>selfass_visit (+)</td>
<td>ques_detail (+)</td>
<td>forum_visit (-)</td>
<td>ques_detail (+)</td>
</tr>
<tr>
<td>exercise_visit (+)</td>
<td>ques_facts (+)</td>
<td>forum_stay (-)</td>
<td>ques_overview (-)</td>
</tr>
<tr>
<td>exercise_stay (+)</td>
<td>ques_concepts (-)</td>
<td>forum_post (-)</td>
<td>ques_interpret (-)</td>
</tr>
<tr>
<td>example_stay (-)</td>
<td>selfass_visit (+)</td>
<td>ques_graphics (+)</td>
<td>ques_develop (-)</td>
</tr>
<tr>
<td>content_visit (-)</td>
<td>selfass_result_duration (+)</td>
<td>ques_text (-)</td>
<td>outline_visit (-)</td>
</tr>
<tr>
<td>content_stay (-)</td>
<td>selfass_duration (+)</td>
<td>content_visit (-)</td>
<td>outline_stay (-)</td>
</tr>
<tr>
<td>outline_stay (-)</td>
<td>exercise_visit (+)</td>
<td></td>
<td>navigation_skip (-)</td>
</tr>
<tr>
<td>selfass_duration (-)</td>
<td>ques_rev_later (+)</td>
<td></td>
<td>overview_visit (-)</td>
</tr>
<tr>
<td>selfass_result_duration (-)</td>
<td>ques_develop (-)</td>
<td></td>
<td>overview_stay (-)</td>
</tr>
<tr>
<td>selfass_twice_wrong (+)</td>
<td>example_visit (+)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>forum_visit (-)</td>
<td>example_stay (+)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>forum_post (+)</td>
<td>content_visit (-)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>content_stay (-)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Evaluation

- Study with 75 students
 - Let them fill out the ILS questionnaire
 - Tracked their behaviour in an online course
- Using a measure of precision
 \[
 \text{Precision} = \frac{\sum_{i=1}^{n} \text{Sim}(LS_{\text{predicted}}, LS_{\text{ILS}})}{n}
 \]
- Looking at the difference between results from ILS and automatic approach
- Results

<table>
<thead>
<tr>
<th>Comparison</th>
<th>act/ref</th>
<th>sen/int</th>
<th>vis/ver</th>
<th>seq/glo</th>
</tr>
</thead>
<tbody>
<tr>
<td>ILS and automatic approach</td>
<td>79.33%</td>
<td>77.33%</td>
<td>76.67%</td>
<td>73.33%</td>
</tr>
</tbody>
</table>

→ suitable instrument for identifying learning styles
Tool for Identifying Learning Styles

- Developed a stand-alone tool for identifying learning styles in learning systems
Automatic Identification of Working Memory Capacity (WMC)

- WMC is an important trait for learning
- WMC enables the human brain to keep active a limited amount of information for a very brief period of time
- Learners with high WMC can remember almost double the amount of information than learners with low WMC
- However, typically learning systems do not consider this individual differences in WMC

Research Aim:
- Identify WMC automatically based on students’ behaviour in a course
- Solution should be independent of the learning system
Automatic Identification of Working Memory Capacity (WMC)

- Monitor students’ behaviour for indications of low or high WMC:
 - Linear/non-linear navigation
 - Constant reverse navigation
 - Simultaneous tasks
 - Ability to retrieve information effectively from long-term memory
 - Recall information from different sessions
 - Revisiting already learned materials in different session
 - Relationship with learning style
Calculating WMC

Measure Total WMC of a student from all learning sessions (LSs)

\[
\text{Total WMC} = \frac{\sum_{i=1}^{n} \text{WMC}_{LS_i} \times w_i}{\sum_{i=1}^{n} w_i} = \frac{0.73 \times 11 + 0.75 \times 14 + 0.47 \times 6}{11 + 14 + 6} = \frac{21.35}{31} = 0.69 \text{ (HWMC)}
\]

\[
\begin{cases}
\text{HWMC if } \text{WMC}_{LS_i} > 0.5 \\
\text{LWMC if } \text{WMC}_{LS_i} < 0.5 \\
\text{Balanced if } \text{WMC}_{LS_i} = 0.5
\end{cases}
\]
Automatic Identification of Device Functionalities and Usage

How to identify device functionalities and usage of such functionalities?

- General Aim and Benefits:
 - Approach should work for smartphones, tablets and desktop computers
 - Investigating how learners use their mobile devices for learning
 - Identifying learning strategies that are successful
 - Basis for adaptivity and personalization based on students’ context
Features

<table>
<thead>
<tr>
<th>Category</th>
<th>Feature name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Communication</td>
<td>Bluetooth</td>
</tr>
<tr>
<td></td>
<td>Wi-Fi</td>
</tr>
<tr>
<td></td>
<td>Telephony</td>
</tr>
<tr>
<td></td>
<td>SMS</td>
</tr>
<tr>
<td>Location</td>
<td>GPS</td>
</tr>
<tr>
<td></td>
<td>Network Location</td>
</tr>
<tr>
<td>Sensors</td>
<td>Camera</td>
</tr>
<tr>
<td></td>
<td>Microphone</td>
</tr>
<tr>
<td></td>
<td>Barometer</td>
</tr>
<tr>
<td></td>
<td>Compass</td>
</tr>
<tr>
<td></td>
<td>Gyroscope</td>
</tr>
<tr>
<td></td>
<td>Light</td>
</tr>
<tr>
<td></td>
<td>Proximity</td>
</tr>
<tr>
<td></td>
<td>Accelerometer</td>
</tr>
<tr>
<td>Input</td>
<td>Soft Keyboard</td>
</tr>
<tr>
<td></td>
<td>Hard Keyboard</td>
</tr>
<tr>
<td></td>
<td>Touchscreen</td>
</tr>
</tbody>
</table>
Academic Analytics
What is academic analytics?
- Analysis of data to support educational institutions, including faculty/teachers, learning designers, decision makers, etc.
- Institution-wide and cross-course/cross-department analysis
- Includes research related to
 - Effectiveness of teaching strategies
 - Effectiveness of course designs
 - Teacher Dashboards
 - Retention and at-risk identification
 - ...
In online education, educators and learning designers typically don’t get much feedback on whether or not their teaching strategies and course designs are successful/helpful for students.

Learning Management Systems (LMSs) generate a lot of data

But learning designers and educators don’t have skills to use these data (e.g.: SQL)
General Aim of Research

How to provide support for users without computer science background to access complex LMS data?

General aim:

- Design, develop and evaluate a tool that provides users with easy access to complex educational log data
- Allow users to ask “questions” to the data
- Allow users to start with easy queries and then build upon them
- Work for different LMS
- Facilitate teachers’ learning about their teaching strategies and course designers’ learning about their learning designs
Procedure

Building a profile

- Select a learning system to connect to
- Create/Select a data set (courses)
- Create/Select a patterns (queries)
Wizard Start

Active Database: OldMoodle
Selected Datasets: COMP200, COMP301

I want to create a new pattern from scratch.

I want to create a new pattern from an existing pattern. Goes to select pattern screen then goes to Pattern Builder wizard with form prefilled.

I want to chain two existing patterns. Goes to select pattern screen then goes to Pattern Builder wizard with form prefilled.

I want to perform an analysis on an existing pattern. Goes to select pattern screen then goes to perform analysis screen.

Select this if you want to create an entirely new Pattern

Select this if you want to create a new Pattern, but start with an existing Pattern

Select this if you want to create a new Pattern, but as a combination of two existing Patterns

Select this if you want to see the SUM or Average or Count or Minimum value or Maximum value of an existing Pattern’s results.
Choose Concept

Selected outside wizard...here for reference.

Concepts listed dynamically based on concepts exposed via template (Concept table inner join concept mapping table where lms = active lms). Selecting concepts automatically populates the next tab - the attributes.

Pattern Result Pane will output the results of the pattern as it is being created - limit to top 10 rows.

SQL Pane is non-editable preview of the generated SQL. To be used as a debugging device for development or as a cool feature to show advanced users what SQL is being generated. This is updated dynamically as the user selects options in the wizard.
Choose Concept Attributes

Concepts attributes listed dynamically based on concepts selected in previous step AND via template (Concept table inner join concept mapping table where lms = active database)

Patter Result Pane will output the results of the pattern as it is being created - limit to top 10 rows.

SQL Pane is non-editable preview of the generated SQL. To be used as a debugging device for development or as a cool feature to show advanced users what SQL is being generated. This is updated dynamically as the user selects options in the wizard.
Add Limits

At this point the concepts are listed along with filter types based on the data type of the attribute. The text `->` means OR LIKE (for whildcard match), date `->` range where if only one value is entered then it is the lower or upper bound, also equals (but not to time level), number `->` range where if only one value is entered then it is the lower or upper bound.

Filter options get set only when filter radio button selected, either 1 or 2 text boxes depending on data type and filter type. Will have to validate data based on data type of attribute.

Pattern Result (top 10 rows only)

<table>
<thead>
<tr>
<th>Course Name</th>
<th>Course Open Date</th>
<th>123</th>
<th>Course Duration</th>
<th>Student Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMP 200</td>
<td>Sept 1 2012</td>
<td></td>
<td>123</td>
<td>Stephen Kladich</td>
</tr>
<tr>
<td>COMP 301</td>
<td>Oct 12, 2012</td>
<td></td>
<td>123</td>
<td>Kinshuk</td>
</tr>
</tbody>
</table>

SQL Pane

```
SELECT blah, blah 
FROM blah, blah 
WHERE blah = 123
```
Define Sorting

By default sorting form elements will be disabled until this is checked. Unchecking will reset this part of form (and hence revert the SQL as well).

At this point the concepts are listed in order they were clicked in "Choose Attributes"

Sort Order arrows are clickable and will physically move the attribute up or down on this list. As user clicks sort type for an attribute, the attribute moves to next spot on list AND only arrows for selected attributes Sort order will be order of the list as displayed (only selected).
User will click Finish to save the pattern and go to the pattern management screen.
User has option to make pattern usable (but not editable) by others.
Pattern will be stored and can be chained/edited later.
Will do check that no other pattern has same name prior to save.

Active Database
- OldMoodle

Selected Datasets
- COMP200, COMP301

Choose Concepts > Choose Attributes > Add Limits > Define Sorting > Save

What would you like to name your pattern?

Pattern Name:

Pattern Description:

Pattern usable by others

Required

Pattern Result (top 10 rows only)

<table>
<thead>
<tr>
<th>Course Name</th>
<th>Course Open Date</th>
<th>Course Duration</th>
<th>Student Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMP 200</td>
<td>Sept 1 2012</td>
<td>123</td>
<td>Stephen Kladich</td>
</tr>
<tr>
<td>COMP301</td>
<td>Oct 12, 2012</td>
<td>123</td>
<td>Kinshuk</td>
</tr>
</tbody>
</table>

SQL Pane

```
SELECT blah, blah, MAX(Course Duration) as "Longest Course"
FROM blah, blah
WHERE blah = 123
GROUP BY Course Duration
ORDER BY blah
```
Select Pattern

Active Database: OldMoodle
Selected Datasets: COMP200, COMP301

Select what you patterns you would like to work with.

Available Patterns
- Pattern One
- Pattern Two
- Pattern Three
- Pattern Four
- Pattern Five
- Pattern Six
- Pattern Seven

Depending on last choice, user can select one pattern (radio button) or two (checkbox) patterns. In the case of two patterns will validate that only two checkboxes selected. Only patterns user created or are public will be displayed.
Perform Analysis

Selecting this checkbox means that only the computed column is in the result.
Thus this part removes all other columns from the select list and

Only those attributes that are of a numerical data type in the source pattern will be listed here.
Calculations: COUNT/AVG/SUM/MIN/MAX
Thus this part adds columns to the select list

All of the pattern’s Concepts listed here.
GROUP BY clause defined here

HAVING clause defined here...text based on type and attribute to analyze (user selected radio button and first drop down)

User can then specify the Column Alias (Column header text) for the computed column
Will have to validate that only alpha numerics are here.
Group activity

How can AAT be extended and used in an ubiquitous setting?

1. Build teams of 3-4 students
2. Select an ubiquitous learning scenario (e.g., learning in museum, zoo, etc.)
3. Think about the types of data that the tool can provide users (teachers, course designers, etc.) access to
4. Think about how users (teachers, course designers, etc.) can benefit from the data
5. Present and discuss ideas to other teams