Adaptivity and Personalization in Learning Systems

Sabine Graf
School of Computing and Information Systems
Athabasca University, Canada
sabineg@athabascau.ca
http://sgraf.athabascau.ca
Adaptivity and Personalization in Learning Systems

How can we make learning systems more adaptive, intelligent and personalized

- Based on a comprehensive student model that combines learner information and context information
- In different settings such as desktop-based, mobile and ubiquitous settings
- In different situations such as for formal, informal and non-formal learning
- Supporting learners as well as teachers
- Develop approaches, add-ons and mechanisms that extend existing learning systems
Adaptivity and Personalization in Learning Systems

- Students’ characteristics
 - Learning styles
 - Cognitive traits
 - Context information (environmental context & device functionalities)
 - Motivational aspects
 - Affective states

- Different settings
 - Learning management systems
 - Mobile / Ubiquitous learning
Adaptivity and Personalization in Learning Systems

- Students’ characteristics
 - Learning styles
 - Cognitive traits
 - Context information (environmental context & device functionalities)
 - Motivational aspects
 - Affective states

- Different settings
 - Learning management systems
 - Mobile / Ubiquitous learning
Adaptivity based on Learning Styles

- In order to provide adaptivity, two steps are required:
 - Identifying students’ characteristics
 - Use the information about students’ characteristics to provide them with adaptive courses

- Focus on extending learning management systems
 - Because these systems are typically used by educational institutions

- Focus on learning styles
 - Because it has high potential to support learners
 - Felder-Silverman learning style model
Automatic Identification of Learning Styles
Automatic Identification of Learning Styles

- Learning styles questionnaires have several disadvantages (e.g., students don’t like them, non-intentional influences, can be done only once)

- Automatic modelling
 - What are students really doing in an online course?
 - Infer their learning styles from learners’ behaviour

- Benefits of automatic student modelling
 - No additional effort for students
 - More accurate results

- General Goal
 - Developing an approach for learning systems in general
 - Implementing and evaluating this approach in Moodle
 - Developing a tool which can be used by teachers in order to identify students’ learning styles
Automatic Identification of Learning Styles

- Identifying learning styles is based on patterns of behaviour.
- Commonly used types of learning objects were used (Content objects, Outlines, Examples, Self-assessment tests, Exercises, Discussion forum) and relevant patterns were derived from these types of learning objects.
- Overall, 27 patterns were used for the four learning style dimensions.
- Calculation of learning styles is based on hints from patterns.
- A simple rule-based mechanism is used for this calculation (currently investigating the use of neural networks in combination with particle swarm optimization).
Determining Relevant Behaviour

<table>
<thead>
<tr>
<th>Active/Reflective</th>
<th>Sensing/Intuitive</th>
<th>Visual/Verbal</th>
<th>Sequential/Global</th>
</tr>
</thead>
<tbody>
<tr>
<td>selfass_visit (+)</td>
<td>ques_detail (+)</td>
<td>forum_visit (-)</td>
<td>ques_detail (+)</td>
</tr>
<tr>
<td>exercise_visit (+)</td>
<td>ques_facts (+)</td>
<td>forum_stay (-)</td>
<td>ques_overview (-)</td>
</tr>
<tr>
<td>exercise_stay (+)</td>
<td>ques_concepts (-)</td>
<td>forum_post (-)</td>
<td>ques_interpret (-)</td>
</tr>
<tr>
<td>example_stay (-)</td>
<td>selfass_visit (+)</td>
<td>ques_graphics (+)</td>
<td>ques_develop (-)</td>
</tr>
<tr>
<td>content_visit (-)</td>
<td>selfass_result_duration (+)</td>
<td>ques_text (-)</td>
<td>outline_visit (-)</td>
</tr>
<tr>
<td>content_stay (-)</td>
<td>selfass_duration (+)</td>
<td>content_visit (-)</td>
<td>outline_stay (-)</td>
</tr>
<tr>
<td>outline_stay (-)</td>
<td>exercise_visit (+)</td>
<td></td>
<td>navigation_skip (-)</td>
</tr>
<tr>
<td>selfass_duration (-)</td>
<td>ques_rev_later (+)</td>
<td></td>
<td>overview_visit (-)</td>
</tr>
<tr>
<td>selfass_result_duration (-)</td>
<td>ques_develop (-)</td>
<td></td>
<td>overview_stay (-)</td>
</tr>
<tr>
<td>selfass_twice_wrong (+)</td>
<td>example_visit (+)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>forum_visit (-)</td>
<td>example_stay (+)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>forum_post (+)</td>
<td>content_visit (-)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>content_stay (-)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Evaluation

- Study with 75 students
 - Let them fill out the ILS questionnaire
 - Tracked their behaviour in an online course
- Using a measure of precision
 \[
 \text{Precision} = \frac{\sum_{i=1}^{n} \text{Sim}(\text{LS}_{\text{predicted}}, \text{LS}_{\text{ILS}})}{n}
 \]
- Looking at the difference between results from ILS and automatic approach

<table>
<thead>
<tr>
<th></th>
<th>act/ref</th>
<th>sen/int</th>
<th>vis/ver</th>
<th>seq/glo</th>
</tr>
</thead>
<tbody>
<tr>
<td>comparison</td>
<td>79.33%</td>
<td>77.33%</td>
<td>76.67%</td>
<td>73.33%</td>
</tr>
<tr>
<td>between ILS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>and automatic</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>approach</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

→ suitable instrument for identifying learning styles
Tool for Identifying Learning Styles

- Developed a stand-alone tool for identifying learning styles in learning systems
Adaptive Mechanism for Providing Advanced Adaptivity based on Learning Styles
Adaptive Course Provision based on Learning Styles

- Develop a mechanism that enables learning systems to automatically generate adaptive courses

- General goals:
 - Mechanism should be applicable for different learning systems
 - Mechanism should ask teachers for as little as possible additional effort

- Benefits:
 - Teachers can continue using their courses in existing learning systems
 - Students get personalized support with respect to their learning styles
Adaptive Course Provision

- Incorporates only common types of learning objects
 - Content
 - Outlines
 - Conclusions
 - Examples
 - Self-assessment tests
 - Exercises

- Adaptation Features
 - Adaptive sequencing of examples, exercises, self-assessment tests, outlines and conclusions
 - Adapting the number of examples and exercises

- Teachers have to:
 - Provide learning objects
 - Annotate learning objects (distinguish between the objects)
Evaluation of the Concept

- Implemented add-on for Moodle
- Evaluated with 437 students participating in a course about object-oriented modelling
- Results show:
 - Matched Group: less time and equal grades
 - Mismatched Group: ask more often for additional learning objects

→ Demonstrates positive effect of adaptivity
Extension of adaptive mechanism

Make adaptive mechanism more generic and easy to apply for different types of courses

- Added more types of learning objects (overall 12)
- Having as little restrictions as possible for teachers
 - Teachers can add many different types of learning objects (LOs) in their courses
 - Teachers can add types of LOs wherever they feel they fit (as they usually do in LMSs)
 - Teachers do not have to add types of LOs
 - However, the more LOs are available in the course, the more adaptivity can be provided
- Added adaptive annotations
Demo

Demo ...
Current/Future Work on Adaptivity based on Learning Styles

- Using **dynamic** student modelling for more accurate identification and frequent updates in adaptivity
- Developing a mechanism that analyses course content/activities and students’ learning styles and then provides **recommendations to teachers**
- Providing adaptive courses in **mobile** environments
Considering Cognitive Abilities, Motivational Aspects and Context in Learning Systems
Considering Cognitive Abilities in Learning Management Systems

- Cognitive abilities are essential for learning and include, for example,
 - Working Memory Capacity
 - Inductive Reasoning Ability
 - Information Processing Speed
 - Associative Learning Skills
 - Etc.

- Automatic identification of cognitive abilities in learning systems

- Automatic provision of adaptive courses based on students’ cognitive abilities (in combination with learning styles)
Motivational Aspects in LMSs

- Motivation is a key factor in education
- Different learners are motivated differently
- Our research aims at:
 - extending LMSs with motivational techniques which are domain-independent and course-independent
 - Examples:
 - Goal setting
 - Progress timeline & progress annotations
 - Ranking
 - Awards & award levels
 - ...
 - Enable systems to identify preferred motivational techniques, in particular situations
 - Enable systems to provide personalized motivational techniques
Considering Learners’ Environmental Context

- Due to the recent advances in mobile technologies, learners can learn anywhere.

- Our research aims at:
 - Enabling mobile systems to know the learners’ environment and provide him/her with learning objects/activities that work best in such environments.
 - Investigating the use of different sensors (e.g., microphone, GPS, camera, etc.) to get a comprehensive context model, including, for example,
 - Whether a learner is in a silent or noisy environment
 - Whether a learner is alone or in a group
 - Whether a learner is at a particular place or moving (e.g., in a bus)
 - etc.
 - Provide learners with adaptive recommendations based on his/her context, considering individual and community-based data.
Questions

Sabine Graf
http://sgraf.athabascau.ca
sabineg@athabascau.ca