Adaptivity and Personalization in Educational Systems

Dr. Sabine Graf
Associate Professor

http://sgraf.athabascau.ca
sabineg@athabascau.ca

Research Team:
Muhammad Anwar (PhD student)
Cecilia Ávila (PhD student)
Silvia Margarita Baldiris Navarro (Postdoc)
Kirstie Ballance (RA)
Charles Jason Bernard (MSc student)
Edward da Cunha (MSc student)
Gregory Gomez Blas (undergrad. Student)
Daniel Hamacher (undergrad. student)
Elinam Richmond Hini (MSc student & RA)
Darin Hobbs (MSc student & RA)
Zoran Jeremic (research programmer)
Jeff Kurcz (MSc student and RA)
Philippe Lachance (RA)
Jesus Martinez Arvizu (undergrad. Student)
Tamra Ross (RA)
Rose Simons (MSc student)
Richard Tortorella (PhD student)
Adaptivity and Personalization in Learning Systems

How can we make learning systems more adaptive, intelligent and personalized

- In different settings such as desktop-based, mobile and ubiquitous settings
- In different situations such as for formal, informal and non-formal learning
- Based on a rich student model that combines learner information and context information
- Supporting learners as well as teachers
- Using techniques from artificial intelligence, data mining, visualization, etc.
- Develop approaches, add-ons and mechanisms that extend existing learning systems
Adaptivity and Personalization in Learning Systems

- Considering students’ characteristics and context
 - Learning styles
 - Cognitive traits
 - Motivational aspects
 - Context information (environmental context & device functionalities)
 - Combining students’ characteristics with context

- Providing teachers with intelligent support
 - Awareness of course quality
 - Awareness of students’ progress, characteristics and needs
 - Easy access to educational log data
 - Identification of students at risk of failing a course

- Different settings
 - Learning management systems
 - Mobile / Ubiquitous learning
Adaptivity and Personalization in Learning Systems

- Considering students’ characteristics and context
 - Learning styles
 - Cognitive traits
 - Motivational aspects
 - Context information (environmental context & device functionalities)
 - Combining students’ characteristics with context

- Providing teachers with intelligent support
 - Awareness of course quality
 - Awareness of students’ progress, characteristics and needs
 - Easy access to educational log data
 - Identification of students at risk of failing a course

- Different settings
 - Learning management systems
 - Mobile / Ubiquitous learning
Why Considering Cognitive Abilities in Learning Management Systems?
Why Learning Management Systems?

- are used by most educational institutions
- Examples: Moodle, Blackboard, Sakai, ATutor
- are developed to support teachers to create, administer and teach online courses
- provide a lot of different features
- domain-independent
- provide only little or in most cases no adaptivity
Why Working Memory Capacity?

- There are several cognitive traits/abilities that are highly relevant for learning (e.g., working memory capacity, inductive reasoning ability, associate learning skills, information processing speed, etc.)
- Working memory capacity (WMC) is a very important trait for learning.
- WMC enables humans to keep active a limited amount of information for a very brief period of time.
- Miller (1956) found that people can remember 7+/−2 chunks of information.
- Learners with high WMC can remember almost double the amount of information than learners with low WMC.
- However, typically learning systems do not consider this individual differences in WMC.
Benefits

Aim of research:

- Identify WMC automatically based on students’ behaviour in a course
- Provide teachers with recommendations on how to help students
- Provide students with adaptive support to accommodate their WMC
How to Automatically Identify Cognitive Abilities in Learning Management Systems?
Automatic Identification of Working Memory Capacity (WMC)

- Monitor students’ behaviour for indications of low or high WMC:
 - Linear/non-linear navigation
 - Constant reverse navigation
 - Simultaneous tasks
 - Ability to retrieve information effectively from long-term memory
 - Recall information from different sessions
 - Revisiting already learned materials in different session
 - Relationship with learning style

[Ting-Wen Chang]
Calculating WMC

Measure Total WMC of a student from all learning sessions (LSs)

Total WMC = \(\frac{\sum_{i=1}^{n} \text{WMC}_{LS_i} \times w_i}{\sum_{i=1}^{n} w_i} \) = \(\frac{0.73 \times 11 + 0.75 \times 14 + 0.47 \times 6}{11 + 14 + 6} \) = \(\frac{21.35}{31} \) = 0.69 (HWMC)

\[
\begin{align*}
\text{HWMC} & \text{ if } \text{WMC}_{LS_i} > 0.5 \\
\text{LWMC} & \text{ if } \text{WMC}_{LS_i} < 0.5 \\
\text{Balanced} & \text{ if } \text{WMC}_{LS_i} = 0.5
\end{align*}
\]
Evaluation

- **Study with 63 students**
 - Asked students to perform Web-OSPAN task
 - Gathered data from students’ behaviour in an online course

- Investigated difference between Web-OSPAN results and results from our approach

- **Results:**
 - Error rate: 0.191 (on a scale of 0 to 1)
Evaluation

- Improvements through computational intelligence techniques
 - Use neural networks to classify behaviours
 - Use optimization algorithms (genetic algorithms, ant colony optimization, particle swarm optimization) to find out the weight of patterns
 - Results:

<table>
<thead>
<tr>
<th>Approach</th>
<th>Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>Literature-based approach</td>
<td>0.1910</td>
</tr>
<tr>
<td>ANN</td>
<td>0.1376</td>
</tr>
<tr>
<td>GA</td>
<td>0.1484</td>
</tr>
<tr>
<td>ACS</td>
<td>0.1685</td>
</tr>
<tr>
<td>PSO</td>
<td>0.1654</td>
</tr>
</tbody>
</table>

[Jason Bernard, Ting-Wen-Chang]
Visualization of WMC

- Once WMC is identified, we also want to use it
- Visualization of information to students/teachers
- Users can select a student and see their WMC

Demo ...
Why Learning Styles?

- Complex research area with several open research questions
- Learners have different ways in which they prefer to learn
- If these preferences are not supported, learners can have difficulties in learning
- Previous studies showed that providing learners with courses that fit their learning styles has potential to help learners in learning
Felder-Silverman Learning Style Model

- Each learner has a preference on each of the dimensions

- Dimensions:
 - Active – Reflective
 learning by doing – learning by thinking things through
 group work – work alone
 - Sensing – Intuitive
 concrete material – abstract material
 more practical – more innovative and creative
 patient / not patient with details
 standard procedures – challenges
 - Visual – Verbal
 learning from pictures – learning from words
 - Sequential – Global
 learn in linear steps – learn in large leaps
 good in using partial knowledge – need „big picture“
Visualization of Learning Style

- We also identify students’ learning styles in a similar fashion and visualize this information to teachers.
- Users can select a student and see their learning styles.

Demo ...
How to Provide Recommendations to Teachers based on Students’ Working Memory Capacity?
Recommendations for Teachers based on Students’ Cognitive Abilities

Research Aim

- Points out learning sessions/chapters where students’ behaviour does not match with their identified WMC
- Provide teachers with recommendations on how to support students with respect to their WMC

Demo ...

[Ting-Wen Chang]
How to Provide Recommendations to Students based on their Working Memory Capacity?
Automatic Recommendations based on Students’ Cognitive Abilities

- Research aim
 - Provide students with automatic recommendations to individually support their learning based on their WMC

- Adaptive mechanism
 - What recommendation shall the system show?
 - When shall the system provide a recommendation?
 - Which recommendation should be provided?
 - Do students follow recommendations?

[Ting-Wen Chang, Jeff Kurcz]
<table>
<thead>
<tr>
<th>No.</th>
<th>Asking the student to</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1</td>
<td>take notes when he/she learns a learning object</td>
</tr>
<tr>
<td>R2</td>
<td>request help if he/she have any question by posting or asking teachers about this learning object</td>
</tr>
<tr>
<td>R3</td>
<td>post the ideas, thought, or reflection about what he/she learnt in this learning object</td>
</tr>
<tr>
<td>R4</td>
<td>summarize what he/she learnt about this learning object</td>
</tr>
<tr>
<td>R5</td>
<td>rehearsal by revisiting the content of this learning object</td>
</tr>
<tr>
<td>R6</td>
<td>use concept/mind maps to easier remember content of this learning object</td>
</tr>
</tbody>
</table>
When to show a recommendation?

- Show recommendation either before or after a learning object has been viewed
- Two methods for deciding on when to show a recommendation
 - Time-based (how much time has a student spent on a learning object)
 - Probability-based (based on students’ WMC)
When to show a recommendation?

<table>
<thead>
<tr>
<th>No.</th>
<th>Asking the student to</th>
<th>When (before/after learning)</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1</td>
<td>take notes when he/she learns a learning object</td>
<td>before</td>
<td>probability-based</td>
</tr>
<tr>
<td>R2</td>
<td>request help if he/she have any question by posting or asking teachers about this learning object</td>
<td>after</td>
<td>probability-based, time-based</td>
</tr>
<tr>
<td>R3</td>
<td>post the ideas, thought, or reflection about what he/she learnt in this learning object</td>
<td>after</td>
<td>probability-based</td>
</tr>
<tr>
<td>R4</td>
<td>summarize what he/she learnt about this learning object</td>
<td>after</td>
<td>probability-based, time-based</td>
</tr>
<tr>
<td>R5</td>
<td>rehearsal by revisiting the content of this learning object</td>
<td>after</td>
<td>time-based</td>
</tr>
<tr>
<td>R6</td>
<td>use concept/mind maps to easier remember content of this learning object</td>
<td>after</td>
<td>probability-based</td>
</tr>
</tbody>
</table>
When to present which recommendations?

- For each type of learning object, it has been determined whether a recommendation makes sense or not.
- For each type of learning object, recommendations are ranked based on how well they fit for a learning object.
- Consider whether time-based or probability-based method is activated.
- Consider whether a recommendation has been followed or not.
Demo

Demo ...

Introduction to Computing and Information Systems

Navigation
- Home
 - My home
 - Site pages
 - My profile
 - My courses
 - COMP200
 - Participants
 - General
 - 29 March - 4 April
 - Unit Commentary
 - Digital Reading Room Activity
 - Unit Commentary
 - Commentary
 - Learning Objectives
 - Additional

Unit 1 - Section 1: Why Study Information Systems

Examples

After learning this learning object:

Can you summarize in your own words what you learnt about this learning object?

back to content process to next page
How to provide teachers with intelligent support based on learning styles?
Why is there a need to extend LMS to better support teachers?

- LMS are designed for supporting teachers
- However, there are still some open issues in online teaching (e.g., little feedback for teachers)
- But LMS gather huge amounts of data
- These data can be used in different ways:
 - Provide feedback about learners and their progress
 - Provide feedback about courses and their quality
 - Provide feedback on how well courses work for learners
 - Identify learners who have difficulties
 - Identify learning materials that cause difficulties
 - etc.
Analyzing Courses with Respect to Learning Styles

- Focus on providing teachers with feedback on how well their courses work for students with different learning styles

- Research Aim:

 Provide teachers with a tool to

 - see how well their courses supports students with different learning styles and their cohort of students

 - investigate how to improve their courses

 - get recommendations on how to improve their courses

[Moushir El-Bishouty, Kevin Saito]
Demo

Course Analyzer

Analysis Settings
- Select a Course: "TEST103 for Testing"
- Mode: General, Cohort

Course Structure
- TEST103 for Testing
 - Section ID: 43
 - News Forum (Discussion Forum Activity)
 - Introduction
 - Activity (Final Application)
 - Material (Common)
 - Media (Animation)
 - Exercise
 - Quiz 1 (Self-Assessment Test)
 - Practice (Exercise)
 - Discussion (Discussion Forum Activity)
 - Ex. Example
 - Discussion Forum Activity Quiz
 - Readings (Additional Reading Material)
 - Summary (Conclusions)
 - Section 1
 - Section ID: 43

Simulation Settings
- Add LO (Drag and Drop)
- Remove LO (Drag and Drop)
- Select the Course Suitable Learning Object Types
 - Text, Chapter, Example, Real-Life Application

Course Before Modification

<table>
<thead>
<tr>
<th>Active</th>
<th>Reflective</th>
<th>Active</th>
<th>Reflective</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Course After Modification

<table>
<thead>
<tr>
<th>Active</th>
<th>Reflective</th>
<th>Active</th>
<th>Reflective</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Section Before Modification

Simulation Settings
- Add LO (Drag and Drop)
- Remove LO (Drag and Drop)
- Select the Course Suitable Learning Object Types
 - Text, Chapter, Example, Real-Life Application

Section After Modification

Locked Content

- Course Information (Text, Diagram, Analysis)
- Simulation Details (Add, Remove, Select)
- Learning Object Types (Text, Chapter, Example, Real-Life Application)
Questions

Sabine Graf
http://sgraf.athabascau.ca
sabineg@athabascau.ca